Browse Source

doc: Change readme and standalone docker quick start (#14002)

Jay Chung 1 year ago
parent
commit
8c43e71adf

+ 1 - 1
.asf.yaml

@@ -16,7 +16,7 @@
 #
 
 github:
-  description: Apache DolphinScheduler is the modern data workflow orchestration platform with powerful user interface, dedicated to solving complex task dependencies in the data pipeline and providing various types of jobs available `out of the box`
+  description: Apache DolphinScheduler is the modern data orchestration platform. Agile to create high performance workflow with low-code
   homepage: https://dolphinscheduler.apache.org/
   labels:
     - cloud-native

+ 23 - 0
CONTRIBUTING.md

@@ -1 +1,24 @@
 Please refer to the contribution document [How to contribute](docs/docs/en/contribute/join/contribute.md)
+
+## How to Build
+
+```bash
+./mvnw clean install -Prelease
+```
+
+### Build with different Zookeeper versions
+
+The default Zookeeper Server version supported is 3.8.0.
+```bash
+# Default Zookeeper 3.8.0
+./mvnw clean install -Prelease
+# Support to Zookeeper 3.4.6+
+./mvnw clean install -Prelease -Dzk-3.4
+```
+
+Artifact:
+
+```
+dolphinscheduler-dist/target/apache-dolphinscheduler-${latest.release.version}-bin.tar.gz: Binary package of DolphinScheduler
+dolphinscheduler-dist/target/apache-dolphinscheduler-${latest.release.version}-src.tar.gz: Source code package of DolphinScheduler
+```

+ 40 - 78
README.md

@@ -1,105 +1,70 @@
-Dolphin Scheduler Official Website
-[dolphinscheduler.apache.org](https://dolphinscheduler.apache.org)
-==================================================================
+# Apache Dolphinscheduler
 
 [![License](https://img.shields.io/badge/license-Apache%202-4EB1BA.svg)](https://www.apache.org/licenses/LICENSE-2.0.html)
-[![codecov](https://codecov.io/gh/apache/dolphinscheduler/branch/dev/graph/badge.svg)]()
+![codecov](https://codecov.io/gh/apache/dolphinscheduler/branch/dev/graph/badge.svg)
 [![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=apache-dolphinscheduler&metric=alert_status)](https://sonarcloud.io/dashboard?id=apache-dolphinscheduler)
 [![Twitter Follow](https://img.shields.io/twitter/follow/dolphinschedule.svg?style=social&label=Follow)](https://twitter.com/dolphinschedule)
 [![Slack Status](https://img.shields.io/badge/slack-join_chat-white.svg?logo=slack&style=social)](https://s.apache.org/dolphinscheduler-slack)
+[![CN doc](https://img.shields.io/badge/文档-中文版-blue.svg)](README_zh_CN.md)
 
-## Features
+## About
 
-Apache DolphinScheduler is the modern data workflow orchestration platform with powerful user interface, dedicated to solving complex task dependencies in the data pipeline and providing various types of jobs available `out of the box`
+Apache DolphinScheduler is the modern data orchestration platform. Agile to create high performance workflow with low-code. It is also provided powerful user interface,
+dedicated to solving complex task dependencies in the data pipeline and providing various types of jobs available **out of the box**
 
 The key features for DolphinScheduler are as follows:
 
-- Easy to deploy, we provide 4 ways to deploy, such as Standalone deployment,Cluster deployment,Docker / Kubernetes deployment and Rainbond deployment
-- Easy to use, there are four ways to create workflows:
-
-  - Visually, create tasks by dragging and dropping tasks
-  - [PyDolphinScheduler](https://dolphinscheduler.apache.org/python/main/index.html), Creating workflows via Python API, aka workflow-as-code
-  - Yaml definition, mapping yaml into workflow(have to install PyDolphinScheduler currently)
-  - Open API, Creating workflows
-
-- Highly Reliable,
-  DolphinScheduler uses a decentralized multi-master and multi-worker architecture, which naturally supports horizontal scaling and high availability
+- Easy to deploy, provide four ways to deploy which including Standalone, Cluster, Docker and Kubernetes.
+- Easy to use, workflow can be created and managed by four ways, which including Web UI, [Python SDK](https://dolphinscheduler.apache.org/python/main/index.html), Yaml file and Open API
+- Highly reliable and high availability, decentralized architecture with multi-master and multi-worker, native supports horizontal scaling.
 - High performance, its performance is N times faster than other orchestration platform and it can support tens of millions of tasks per day
-- Supports multi-tenancy
-- Supports various task types: Shell, MR, Spark, SQL (MySQL, OceanBase, PostgreSQL, Hive, Spark SQL), Python, Procedure, Sub_Workflow,
-  Http, K8s, Jupyter, MLflow, SageMaker, DVC, Pytorch, Amazon EMR, etc
-- Orchestrating workflows and dependencies, you can pause/stop/recover task any time, failed tasks can be set to automatically retry
-- Visualizing the running state of the task in real-time and seeing the task runtime log
-- What you see is what you get when you edit the task on the UI
-- Backfill can be operated on the UI directly
-- Perfect project, resource, data source-level permission control
-- Displaying workflow history in tree/Gantt chart, as well as statistical analysis on the task status & process status in each workflow
-- Supports internationalization
-- Cloud Native, DolphinScheduler supports orchestrating multi-cloud/data center workflow, and
-  supports custom task type
-- More features waiting for partners to explore
-
-## User Interface Screenshots
-
-![dag](./images/en_US/dag.png)
-<img width="1100" src="https://user-images.githubusercontent.com/15833811/197348110-1653ea32-ce07-436c-a0b8-6ac1af80aea5.png">
-![data-source](./images/en_US/data-source.png)
-![home](./images/en_US/home.png)
-![master](./images/en_US/master.png)
-![workflow-tree](./images/en_US/workflow-tree.png)
+- Cloud Native, DolphinScheduler supports orchestrating multi-cloud/data center workflow, and supports custom task type
+- Versioning both workflow and workflow instance(including tasks)
+- Various state control of workflow and task, support pause/stop/recover them in any time
+- Multi-tenancy support
+- Others like backfill support(Web UI native), permission control including project, resource and data source
 
-## QuickStart in Docker
+## QuickStart
 
-Please refer the official website document: [QuickStart in Docker](https://dolphinscheduler.apache.org/en-us/docs/3.1.2/guide/start/docker)
+- For quick experience
+  - Want to [start with standalone](https://dolphinscheduler.apache.org/en-us/docs/3.1.5/guide/installation/standalone)
+  - Want to [start with Docker](https://dolphinscheduler.apache.org/en-us/docs/3.1.5/guide/start/docker)
+- For Kubernetes
+  - [Start with Kubernetes](https://dolphinscheduler.apache.org/en-us/docs/3.1.5/guide/installation/kubernetes)
 
-## QuickStart in Kubernetes
+## User Interface Screenshots
 
-Please refer to the official website document: [QuickStart in Kubernetes](https://dolphinscheduler.apache.org/en-us/docs/3.1.2/guide/installation/kubernetes)
+* **Homepage:** Project and workflow overview, including the latest workflow instance and task instance status statistics.
+![home](images/home.png)
 
-## How to Build
+* **Workflow Definition:** Create and manage workflow by drag and drop, easy to build and maintain complex workflow, support [bulk of tasks](https://dolphinscheduler.apache.org/en-us/docs/3.1.5/introduction-to-functions_menu/task_menu) out of box.
+![workflow-definition](images/workflow-definition.png)
 
-```bash
-./mvnw clean install -Prelease
-```
+* **Workflow Tree View:** Abstract tree structure could clearer understanding of the relationship between tasks
+![workflow-tree](images/workflow-tree.png)
 
-### Build with different Zookeeper versions
+* **Data source:** Manage support multiple external data sources, provide unified data access capabilities for such as MySQL, PostgreSQL, Hive, Trino, etc.
+![data-source](images/data-source.png)
 
-The default Zookeeper Server version supported is 3.8.0.
-```bash
-# Default Zookeeper 3.8.0
-./mvnw clean install -Prelease
-# Support to Zookeeper 3.4.6+
-./mvnw clean install -Prelease -Dzk-3.4
-```
+* **Monitor:** View the status of the master, worker and database in real time, including server resource usage and load, do quick health check without logging in to the server.
+![monitor](images/monitor.png)
 
-Artifact:
+## Suggestions & Bug Reports
 
-```
-dolphinscheduler-dist/target/apache-dolphinscheduler-${latest.release.version}-bin.tar.gz: Binary package of DolphinScheduler
-dolphinscheduler-dist/target/apache-dolphinscheduler-${latest.release.version}-src.tar.gz: Source code package of DolphinScheduler
-```
+Follow [this guide](https://github.com/apache/dolphinscheduler/issues/new/choose) to report your suggestions or bugs.
 
-## Get Help
+## Contributing
 
-1. Submit an [issue](https://github.com/apache/dolphinscheduler/issues/new/choose)
-2. [Join our slack](https://s.apache.org/dolphinscheduler-slack) and send your question to channel `#general`
-3. Send email to users@dolphinscheduler.apache.org or dev@dolphinscheduler.apache.org
+The community welcomes everyone to contribute, please refer to this page to find out more: [How to contribute](docs/docs/en/contribute/join/contribute.md),
+find the good first issue in [here](https://github.com/apache/dolphinscheduler/contribute) if you are new to DolphinScheduler.
 
 ## Community
 
-You are very welcome to communicate with the developers and users of Dolphin Scheduler. There are two ways to find them:
+Welcome to join the Apache DolphinScheduler community by:
 
-1. Join the Slack channel [Slack](https://asf-dolphinscheduler.slack.com/)
-2. Follow the [Twitter account of DolphinScheduler](https://twitter.com/dolphinschedule) and get the latest news on time
-
-## How to Contribute
-
-The community welcomes everyone to contribute, please refer to this page to find out more: [How to contribute](docs/docs/en/contribute/join/contribute.md).
-
-## Thanks
-
-DolphinScheduler is based on a lot of excellent open-source projects, such as Google guava, grpc, netty, quartz, and many open-source projects of Apache and so on.
-We would like to express our deep gratitude to all the open-source projects used in DolphinScheduler. We hope that we are not only the beneficiaries of open-source, but also give back to the community. Besides, we hope everyone who have the same enthusiasm and passion for open source could join in and contribute to the open-source community
+- Join the [DolphinScheduler Slack](https://s.apache.org/dolphinscheduler-slack) to keep in touch with the community
+- Follow the [DolphinScheduler Twitter](https://twitter.com/dolphinschedule) and get the latest news
+- Subscribe DolphinScheduler mail list, users@dolphinscheduler.apache.org for user and dev@dolphinscheduler.apache.org for developer
 
 # Landscapes
 
@@ -111,6 +76,3 @@ DolphinScheduler enriches the <a href="https://landscape.cncf.io/?landscape=obse
 
 </p >
 
-## License
-
-Please refer to the [LICENSE](https://github.com/apache/dolphinscheduler/blob/dev/LICENSE) file

+ 46 - 72
README_zh_CN.md

@@ -1,102 +1,76 @@
-Dolphin Scheduler Official Website
-[dolphinscheduler.apache.org](https://dolphinscheduler.apache.org)
-==================================================================
+# Apache Dolphinscheduler
 
 [![License](https://img.shields.io/badge/license-Apache%202-4EB1BA.svg)](https://www.apache.org/licenses/LICENSE-2.0.html)
 [![codecov](https://codecov.io/gh/apache/dolphinscheduler/branch/dev/graph/badge.svg)]()
 [![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=apache-dolphinscheduler&metric=alert_status)](https://sonarcloud.io/dashboard?id=apache-dolphinscheduler)
 [![Twitter Follow](https://img.shields.io/twitter/follow/dolphinschedule.svg?style=social&label=Follow)](https://twitter.com/dolphinschedule)
 [![Slack Status](https://img.shields.io/badge/slack-join_chat-white.svg?logo=slack&style=social)](https://s.apache.org/dolphinscheduler-slack)
-
-[![Stargazers over time](https://starchart.cc/apache/dolphinscheduler.svg)](https://starchart.cc/apache/dolphinscheduler)
-
-[![CN doc](https://img.shields.io/badge/文档-中文版-blue.svg)](README_zh_CN.md)
 [![EN doc](https://img.shields.io/badge/document-English-blue.svg)](README.md)
 
-## 设计特点
+## 关于
 
 一个分布式易扩展的可视化 DAG 工作流任务调度系统。致力于解决数据处理流程中错综复杂的依赖关系,使调度系统在数据处理流程中`开箱即用`。
 
-其主要目标如下:
-
-- 以 DAG 图的方式将 Task 按照任务的依赖关系关联起来,可实时可视化监控任务的运行状态
-- 支持丰富的任务类型:Shell、MR、Spark、SQL(mysql、oceanbase、postgresql、hive、sparksql)、Python、Sub_Process、Procedure 等
-- 支持工作流定时调度、依赖调度、手动调度、手动暂停/停止/恢复,同时支持失败重试/告警、从指定节点恢复失败、Kill 任务等操作
-- 支持工作流优先级、任务优先级及任务的故障转移及任务超时告警/失败
-- 支持工作流全局参数及节点自定义参数设置
-- 支持资源文件的在线上传/下载,管理等,支持在线文件创建、编辑
-- 支持任务日志在线查看及滚动、在线下载日志等
-- 实现集群 HA,通过 Zookeeper 实现 Master 集群和 Worker 集群去中心化
-- 支持对`Master/Worker` cpu load,memory,cpu 在线查看
-- 支持工作流运行历史树形/甘特图展示、支持任务状态统计、流程状态统计
-- 支持补数
-- 支持多租户
-- 支持国际化
-- 还有更多等待伙伴们探索
-
-## 系统部分截图
+DolphinScheduler 的主要特性如下:
 
-![dag](./images/zh_CN/dag.png)
-![data-source](./images/zh_CN/data-source.png)
-![home](./images/zh_CN/home.png)
-![master](./images/zh_CN/master.png)
-![workflow-tree](./images/zh_CN/workflow-tree.png)
+- 易于部署,提供四种部署方式,包括Standalone、Cluster、Docker和Kubernetes。
+- 易于使用,可以通过四种方式创建和管理工作流,包括Web UI、[Python SDK](https://dolphinscheduler.apache.org/python/main/index.html)、Yaml文件和Open API
+- 高可靠高可用,多主多从的去中心化架构,原生支持横向扩展。
+- 高性能,性能比其他编排平台快N倍,每天可支持千万级任务
+- Cloud Native,DolphinScheduler支持编排多云/数据中心工作流,支持自定义任务类型
+- 对工作流和工作流实例(包括任务)进行版本控制
+- 工作流和任务的多种状态控制,支持随时暂停/停止/恢复它们
+- 多租户支持
+- 其他如回填支持(Web UI 原生),包括项目、资源和数据源的权限控制
 
-## 近期研发计划
-
-DolphinScheduler 的工作计划:<a href="https://github.com/apache/dolphinscheduler/projects/1" target="_blank">研发计划</a> ,其中 In Develop 卡片下是正在研发的功能,TODO 卡片是待做事项(包括 feature ideas)
-
-## 参与贡献
+## 快速开始
 
-非常欢迎大家来参与贡献,贡献流程请参考:
-[[参与贡献](docs/docs/zh/contribute/join/contribute.md)]
+- 如果想要体验
+    - [standalone 启动](https://dolphinscheduler.apache.org/zh-cn/docs/3.1.5/guide/installation/standalone)
+    - [Docker 启动](https://dolphinscheduler.apache.org/zh-cn/docs/3.1.5/guide/start/docker)
+- 想 Kubernetes 部署
+    - [Kubernetes 部署](https://dolphinscheduler.apache.org/zh-cn/docs/3.1.5/guide/installation/kubernetes)
 
-## 快速试用 Docker
-
-请参考官方文档: [快速试用 Docker 部署](https://dolphinscheduler.apache.org/zh-cn/docs/3.1.2/guide/start/docker)
-
-## 快速试用 Kubernetes
+## 系统部分截图
 
-请参考官方文档: [快速试用 Kubernetes 部署](https://dolphinscheduler.apache.org/zh-cn/docs/3.1.2/guide/installation/kubernetes)
+* **主页**:项目和工作流概览,包括最新的工作流实例和任务实例状态统计。
+![home](images/home.png)
 
-## 如何构建
+* **工作流定义**: 通过拖拉拽创建和管理工作流,轻松构建和维护复杂的工作流。
+![workflow-definition](images/workflow-definition.png)
 
-```bash
-./mvnw clean install -Prelease
-```
+* **工作流树状图**: 抽象的树形结构可以更清晰的理解任务之间的关系
+![workflow-tree](images/workflow-tree.png)
 
-### 构建不同版本的 Zookeeper 依赖
+* **数据源**: 管理支持多种外部数据源,为MySQL、PostgreSQL、Hive、Trino等,并提供统一的数据访问能力。
+![data-source](images/data-source.png)
 
-默认支持 Zookeeper Server 3.8.0。
-```bash
-# 默认 Zookeeper Client 3.8.0
-./mvnw clean install -Prelease
-# 构建支持 Zookeeper 3.4.6+
-./mvnw clean install -Prelease -Dzk-3.4
-```
+* **监控**:实时查看master、worker和数据库的状态,包括服务器资源使用情况和负载情况,无需登录服务器即可快速进行健康检查。
+![monitor](images/monitor.png)
 
-制品:
+## 建议和报告 bugs
 
-```
-dolphinscheduler-dist/target/apache-dolphinscheduler-${latest.release.version}-bin.tar.gz: DolphinScheduler 二进制包
-dolphinscheduler-dist/target/apache-dolphinscheduler-${latest.release.version}-src.tar.gz: DolphinScheduler 源代码包
-```
+根据 [这个步骤](https://github.com/apache/dolphinscheduler/issues/new/choose) 来报告你的 bug 或者提交建议。
 
-## 感谢
+## 参与贡献
 
-Dolphin Scheduler 使用了很多优秀的开源项目,比如 google 的 guava、grpc,netty,quartz,以及 apache 的众多开源项目等等,
-正是由于站在这些开源项目的肩膀上,才有 Dolphin Scheduler 的诞生的可能。对此我们对使用的所有开源软件表示非常的感谢!我们也希望自己不仅是开源的受益者,也能成为开源的贡献者,也希望对开源有同样热情和信念的伙伴加入进来,一起为开源献出一份力!
+社区欢迎大家贡献,请参考此页面了解更多:[如何贡献](docs/docs/zh/contribute/join/contribute.md),在[这里](https://github.com/apache/dolphinscheduler/contribute)可以找到good first issue
+如果你是首次贡献 dolphinscheduler。
 
-## 获得帮助
+## 社区
 
-1. 提交 [issue](https://github.com/apache/dolphinscheduler/issues/new/choose)
-2. [加入 slack 群](https://s.apache.org/dolphinscheduler-slack) 并在频道 `#troubleshooting` 中提问
+欢迎通过以方式加入社区:
 
-## 社区
+- 加入 [DolphinScheduler Slack](https://s.apache.org/dolphinscheduler-slack)
+- 关注 [DolphinScheduler Twitter](https://twitter.com/dolphinschedule) 来获取最新消息
+- 订阅 DolphinScheduler 邮件列表, 用户订阅 users@dolphinscheduler.apache.org 开发者请订阅 dev@dolphinscheduler.apache.org
 
-1. 通过[该申请链接](https://s.apache.org/dolphinscheduler-slack)加入 slack channel
-2. 关注[Apache Dolphin Scheduler 的 Twitter 账号](https://twitter.com/dolphinschedule)获取实时动态
+# Landscapes
 
-## 版权
+<p align="center">
+<br/><br/>
+<img src="https://landscape.cncf.io/images/left-logo.svg" width="150"/>&nbsp;&nbsp;<img src="https://landscape.cncf.io/images/right-logo.svg" width="200"/>
+<br/><br/>
+DolphinScheduler enriches the <a href="https://landscape.cncf.io/?landscape=observability-and-analysis&license=apache-license-2-0">CNCF CLOUD NATIVE Landscape.</a >
 
-请参考 [LICENSE](https://github.com/apache/dolphinscheduler/blob/dev/LICENSE) 文件.
+</p >

+ 5 - 1
docs/docs/en/guide/installation/standalone.md

@@ -12,7 +12,7 @@ If you want to deploy DolphinScheduler in production, we recommend you follow [c
 ## Preparation
 
 - JDK:download [JDK][jdk] (1.8+), install and configure environment variable `JAVA_HOME` and append `bin` dir (included in `JAVA_HOME`) to `PATH` variable. You can skip this step if it already exists in your environment.
-- Binary package: download the DolphinScheduler binary package at [download page](https://dolphinscheduler.apache.org/en-us/download).
+- Binary package: download the DolphinScheduler binary package at [download page](https://dolphinscheduler.apache.org/en-us/download/<version>).  <!-- markdown-link-check-disable-line -->
 
 ## Start DolphinScheduler Standalone Server
 
@@ -32,6 +32,8 @@ bash ./bin/dolphinscheduler-daemon.sh start standalone-server
 
 Access address `http://localhost:12345/dolphinscheduler/ui` and login DolphinScheduler UI. The default username and password are **admin/dolphinscheduler123**
 
+![login](../../../../img/new_ui/dev/quick-start/login.png)
+
 ### Start or Stop Server
 
 The script `./bin/dolphinscheduler-daemon.sh`can be used not only quickly start standalone, but also to stop the service operation. The following are all the commands:
@@ -41,6 +43,8 @@ The script `./bin/dolphinscheduler-daemon.sh`can be used not only quickly start
 bash ./bin/dolphinscheduler-daemon.sh start standalone-server
 # Stop Standalone Server
 bash ./bin/dolphinscheduler-daemon.sh stop standalone-server
+# Check Standalone Server status
+bash ./bin/dolphinscheduler-daemon.sh status standalone-server
 ```
 
 > Note: Python gateway service is started along with the api-server, and if you do not want to start Python gateway

+ 13 - 17
docs/docs/en/guide/start/docker.md

@@ -1,15 +1,15 @@
 # Docker Quick Start
 
-There are three ways to start DolphinScheduler with Docker, [Standalone-server](#using-standalone-server-docker-image) is the way you
-find if you just want to start and try DolphinScheduler as a beginner. [docker-compose](#using-docker-compose-to-start-server) is for
-some who want to deploy DolphinScheduler in small or event middle scale workflows in their daily work.
-[Using exists postgresql and zookeeper server](#using-exists-postgresql-zookeeper) is for users who want to reuse the database
-or zookeeper server already exists.
+There are three ways to start DolphinScheduler with Docker
+
+- [Standalone-server](#using-standalone-server-docker-image) is the way you find if you just want to start and try DolphinScheduler as a beginner.
+- [docker-compose](#using-docker-compose-to-start-server) is for some who want to deploy DolphinScheduler in small or event middle scale workflows in their daily work.
+- [Using exists postgresql and zookeeper server](#using-exists-postgresql-zookeeper) is for users who want to reuse the database or zookeeper server already exists.
 
 ## Prepare
 
-- [Docker](https://docs.docker.com/engine/install/) 1.13.1+
-- [Docker Compose](https://docs.docker.com/compose/) 1.28.0+
+Need to install [Docker](https://docs.docker.com/engine/install/) 1.13.1+ and [Docker Compose](https://docs.docker.com/compose/) 1.28.0+
+before starting DolphinScheduler with Docker
 
 ## Start Server
 
@@ -37,15 +37,7 @@ be stored on disks after you change docker-compose configuration, and it is robu
 DolphinScheduler in a long term. You have to install [docker-compose](https://docs.docker.com/compose/install/) before you
 start servers.
 
-After installed docker-compose, it is recommended to modify some configurations for better experience. We highly recommended
-modify docker-compose's free memory up to 4 GB.
-
-- Mac:Click `Docker Desktop -> Preferences -> Resources -> Memory` modified it
-- Windows Docker Desktop:
-  - Hyper-V mode: Click `Docker Desktop -> Settings -> Resources -> Memory` modified it
-  - WSL 2 mode: see [WSL 2 utility VM](https://docs.microsoft.com/zh-cn/windows/wsl/wsl-config#configure-global-options-with-wslconfig) for more detail.
-
-After complete the configuration, we can get the `docker-compose.yaml` file from [download page](https://dolphinscheduler.apache.org/en-us/download)
+After complete the installation, get the `docker-compose.yaml` file from [download page](https://dolphinscheduler.apache.org/en-us/download/<version>)
 form its source package, and make sure you get the right version. After download the package, you can run the commands as below.
 
 ```shell
@@ -63,7 +55,11 @@ $ docker-compose --profile schema up -d
 $ docker-compose --profile all up -d
 ```
 
-> NOTES: It will not only start DolphinScheduler servers but also some others necessary services like PostgreSQL(with `root`
+> NOTES: After installed docker-compose, it is recommended to modify some configurations for better experience. We highly
+> recommended modify docker daemon memory up to 4 GB, see [How to assign more memory to docker container](https://stackoverflow.com/a/44533437/7152658)
+> for more detail.
+>
+> It will not only start DolphinScheduler servers but also some others necessary services like PostgreSQL(with `root`
 > as user, `root` as password and `dolphinscheduler` as database) and ZooKeeper when starting with docker-compose.
 
 ### Using Exists PostgreSQL ZooKeeper

+ 8 - 4
docs/docs/zh/guide/installation/standalone.md

@@ -5,18 +5,18 @@ Standalone 仅适用于 DolphinScheduler 的快速体验.
 如果你是新手,想要体验 DolphinScheduler 的功能,推荐使用 Standalone 方式体检。如果你想体验更完整的功能,或者更大的任务量,推荐使用[伪集群部署](pseudo-cluster.md)。如果你是在生产中使用,推荐使用[集群部署](cluster.md)或者[kubernetes](kubernetes.md)
 
 > **_注意:_** Standalone 仅建议 20 个以下工作流使用,因为其采用内存式的 H2 Database, Zookeeper Testing Server,任务过多可能导致不稳定,并且如果重启或者停止 standalone-server 会导致内存中数据库里的数据清空。
-> 如果您要连接外部数据库,比如 mysql 或者 postgresql,请看[配置数据库](#配置数据库)
+> Standalone 支持元数据持久化,但是需要使用外部数据库,如 mysql 或者 postgresql,请看[配置数据库](#配置数据库)
 
 ## 前置准备工作
 
 - JDK:下载[JDK][jdk] (1.8+),安装并配置 `JAVA_HOME` 环境变量,并将其下的 `bin` 目录追加到 `PATH` 环境变量中。如果你的环境中已存在,可以跳过这步。
-- 二进制包:在[下载页面](https://dolphinscheduler.apache.org/zh-cn/download)下载 DolphinScheduler 二进制包
+- 二进制包:在[下载页面](https://dolphinscheduler.apache.org/en-us/download/<version>)下载 DolphinScheduler 二进制包  <!-- markdown-link-check-disable-line -->
 
 ## 启动 DolphinScheduler Standalone Server
 
 ### 解压并启动 DolphinScheduler
 
-二进制压缩包中有 standalone 启动的脚本,解压后即可快速启动。切换到有 sudo 权限的用户,运行脚本
+二进制压缩包中有 standalone 启动的脚本,解压后即可快速启动。
 
 ```shell
 # 解压并运行 Standalone Server
@@ -30,6 +30,8 @@ bash ./bin/dolphinscheduler-daemon.sh start standalone-server
 
 浏览器访问地址 http://localhost:12345/dolphinscheduler/ui 即可登录系统 UI。默认的用户名和密码是 **admin/dolphinscheduler123**
 
+![登录页面](../../../../img/new_ui/dev/quick-start/login.png)
+
 ## 启停服务
 
 脚本 `./bin/dolphinscheduler-daemon.sh` 除了可以快捷启动 standalone 外,还能停止服务运行,全部命令如下
@@ -39,6 +41,8 @@ bash ./bin/dolphinscheduler-daemon.sh start standalone-server
 bash ./bin/dolphinscheduler-daemon.sh start standalone-server
 # 停止 Standalone Server 服务
 bash ./bin/dolphinscheduler-daemon.sh stop standalone-server
+# 查看 Standalone Server 状态
+bash ./bin/dolphinscheduler-daemon.sh status standalone-server
 ```
 
 [jdk]: https://www.oracle.com/technetwork/java/javase/downloads/index.html
@@ -46,4 +50,4 @@ bash ./bin/dolphinscheduler-daemon.sh stop standalone-server
 ## 配置数据库
 
 Standalone server 使用 H2 数据库作为其元数据存储数据,这是为了上手简单,用户在启动服务器之前不需要启动数据库。但是如果用户想将元数据库存储在
-MySQL 或 PostgreSQL 等其他数据库中,他们必须更改一些配置。请参考 [数据源配置](../howto/datasource-setting.md) `Standalone 切换元数据库` 创建并初始化数据库
+MySQL 或 PostgreSQL 等其他数据库中,必须更改一些配置。请参考 [数据源配置](../howto/datasource-setting.md) `Standalone 切换元数据库` 创建并初始化数据库

+ 14 - 18
docs/docs/zh/guide/start/docker.md

@@ -1,13 +1,14 @@
 # Docker 快速使用教程
 
-本教程使用三种不同的方式通过 Docker 完成 DolphinScheduler 的部署,如果你想要快速体验,推荐使用 standalone-server 镜像,
-如果你想要体验比较完成的服务,推荐使用 docker-compose 启动服务。如果你已经有自己的数据库或者 Zookeeper 服务
-你想要沿用这些基础服务,你可以参考沿用已有的 PostgreSQL 和 ZooKeeper 服务完成部署。
+本教程使用三种不同的方式通过 Docker 完成 DolphinScheduler 的部署
+
+- 如果你想要快速体验,推荐使用 standalone-server 镜像,
+- 如果你想要体验比较完成的服务,推荐使用 docker-compose 启动服务.
+- 如果你已经有自己的数据库或者 Zookeeper 服务你想要沿用这些基础服务,你可以参考沿用已有的 PostgreSQL 和 ZooKeeper 服务完成部署。
 
 ## 前置条件
 
-- [Docker](https://docs.docker.com/engine/install/) 1.13.1+
-- [Docker Compose](https://docs.docker.com/compose/) 1.28.0+
+需要安装 [Docker](https://docs.docker.com/engine/install/) 1.13.1 以上版本,以及 [Docker Compose](https://docs.docker.com/compose/) 1.28.0 以上版本。
 
 ## 启动服务
 
@@ -32,22 +33,15 @@ $ docker run --name dolphinscheduler-standalone-server -p 12345:12345 -p 25333:2
 服务重启的时候保留元数据(如需要挂载到本地路径需要做指定)。他更健壮,能保证用户体验更加完整的 DolphinScheduler 服务。这种方式需要先安装
 [docker-compose](https://docs.docker.com/compose/install/),链接适用于 Mac,Linux,Windows。
 
-安装完成 docker-compose 后我们需要修改部分配置以便能更好体验 DolphinScheduler 服务,我们需要配置不少于 4GB 的空闲内存:
-
-- Mac:点击 `Docker Desktop -> Preferences -> Resources -> Memory` 调整内存大小
-- Windows Docker Desktop:
-  - Hyper-V 模式:点击 `Docker Desktop -> Settings -> Resources -> Memory` 调整内存大小
-  - WSL 2 模式 模式:参考 [WSL 2 utility VM](https://docs.microsoft.com/zh-cn/windows/wsl/wsl-config#configure-global-options-with-wslconfig) 调整内存大小
-
-配置完成后我们需要获取 `docker-compose.yaml` 文件,通过[下载页面](https://dolphinscheduler.apache.org/zh-cn/download)下载对应版本源码包可能是最快的方法,
-源码包对应的值为 "Total Source Code"。当下载完源码后就可以运行命令进行部署了。
+确保 docker-compose 顺利安装后,需要获取 `docker-compose.yaml` 文件,通过[下载页面](https://dolphinscheduler.apache.org/en-us/download/<version>)
+下载对应版本源码包可能是最快的方法,当下载完源码后就可以运行命令进行部署了。
 
 ```shell
 $ DOLPHINSCHEDULER_VERSION=<version>
 $ tar -zxf apache-dolphinscheduler-"${DOLPHINSCHEDULER_VERSION}"-src.tar.gz
 # Mac Linux 用户
 $ cd apache-dolphinscheduler-"${DOLPHINSCHEDULER_VERSION}"-src/deploy/docker
-#  Windows 用户, `cd apache-dolphinscheduler-"${DOLPHINSCHEDULER_VERSION}"-src\deploy\docker`
+# Windows 用户, `cd apache-dolphinscheduler-"${DOLPHINSCHEDULER_VERSION}"-src\deploy\docker`
 
 # 如果需要初始化或者升级数据库结构,需要指定profile为schema
 $ docker-compose --profile schema up -d
@@ -56,8 +50,10 @@ $ docker-compose --profile schema up -d
 $ docker-compose --profile all up -d
 ```
 
-> 提醒:通过 docker-compose 启动服务时,除了会启动 DolphinScheduler 对应的服务外,还会启动必要依赖服务,如数据库 PostgreSQL(用户
-> `root`, 密码 `root`, 数据库 `dolphinscheduler`) 和 服务发现 ZooKeeper。
+> 提醒:安装完成 docker-compose 后需要修改部分配置以便能更好体验 DolphinScheduler 服务,我们推荐配置不少于 4GB 的空闲内存,详见
+> [How to assign more memory to docker container](https://stackoverflow.com/a/44533437/7152658).
+>
+> 通过 docker-compose 启动服务时,除了会启动 DolphinScheduler 对应的服务外,还会启动必要依赖服务,如数据库 PostgreSQL 和 服务发现 ZooKeeper
 
 ### 沿用已有的 PostgreSQL 和 ZooKeeper 服务
 
@@ -131,4 +127,4 @@ $ docker run -d --name dolphinscheduler-alert-server \
 ## 环境变量
 
 可以通过环境变量来修改 Docker 运行的配置,我们在沿用已有的 PostgreSQL 和 ZooKeeper 服务中就通过环境变量修改了 Docker 的数据库配置和
-注册中心配置,关于全部的配置环境可以查看对应组件的 application.yaml 文件了解 <!-- markdown-link-check-disable-line -->
+注册中心配置,关于全部的配置环境可以查看对应组件的 application.yaml 文件了解

images/en_US/data-source.png → images/data-source.png


BIN
images/en_US/dag.png


images/en_US/home.png → images/home.png


images/en_US/master.png → images/monitor.png


BIN
images/workflow-definition.png


images/en_US/workflow-tree.png → images/workflow-tree.png


BIN
images/zh_CN/dag.png


BIN
images/zh_CN/data-source.png


BIN
images/zh_CN/home.png


BIN
images/zh_CN/master.png


BIN
images/zh_CN/workflow-tree.png