瀏覽代碼

Merge remote-tracking branch 'upstream/dev' into dev

gongzijian 6 年之前
父節點
當前提交
2f8acc5b7e
共有 5 個文件被更改,包括 107 次插入513 次删除
  1. 9 17
      docs/zh_CN/前端部署文档.md
  2. 45 432
      docs/zh_CN/后端部署文档.md
  3. 53 62
      install.sh
  4. 0 0
      script/monitor_server.py
  5. 0 2
      script/scp_hosts.sh

+ 9 - 17
docs/zh_CN/前端部署文档.md

@@ -1,20 +1,11 @@
 # 前端部署文档
 
-- ##### 1. 开发环境搭建
-
-- ##### 2. 自动化部署
-
-- ##### 3. 手动部署
-
-- ##### 4. Liunx下使用node启动并且守护进程
-
-
 ### 1.开发环境搭建
    
-- #### node安装
+- #### 安装node
 Node包下载 (注意版本 8.9.4) `https://nodejs.org/download/release/v8.9.4/` 
 
-- #### 前端项目构建
+- #### 构建项目
 用命令行模式 `cd`  进入 `escheduler-ui`项目目录并执行 `npm install` 拉取项目依赖包
 
 > 如果 `npm install` 速度非常慢 
@@ -23,8 +14,6 @@ Node包下载 (注意版本 8.9.4) `https://nodejs.org/download/release/v8.9.4/`
 
 > 运行 `cnpm install` 
 
-
-
 > #####  !!!这里特别注意 项目如果在拉取依赖包的过程中报 " node-sass error " 错误,请在执行完后再次执行以下命令
 ```
 npm install node-sass --unsafe-perm //单独安装node-sass依赖
@@ -44,6 +33,7 @@ API_BASE = http://192.168.220.204:12345
 - `npm run build` 项目打包 (打包后根目录会创建一个名为dist文件夹,用于发布线上Nginx)
 
 
+### 2.自动部署方式
 
 ### 2.自动化部署`
 
@@ -61,6 +51,11 @@ esc_proxy_port="http://192.168.220.154:12345"
 
 前端自动部署基于`yum`操作,部署之前请先安装更新`yum
 
+在项目`escheduler-ui`根目录下,修改install.sh中的参数,执行`./install(线上环境).sh` 
+
+
+
+### 3.手动部署方式
 在项目`escheduler-ui`根目录执行`./install(线上环境).sh` 
 
 
@@ -167,11 +162,8 @@ systemctl restart nginx
 │ npm      │ 0  │ N/A     │ fork │ 6168 │ online │ 31      │ 0s     │ 0%  │ 5.6 MB   │ root │ disabled │
 └──────────┴────┴─────────┴──────┴──────┴────────┴─────────┴────────┴─────┴──────────┴──────┴──────────┘
  Use `pm2 show <id|name>` to get more details about an app
+## FAQ
 
-```
-
-
-## 问题
 ####  1. 上传文件大小限制
 编辑配置文件 `vi /etc/nginx/nginx.conf`
 ```

+ 45 - 432
docs/zh_CN/后端部署文档.md

@@ -6,7 +6,7 @@
  * [Mysql](https://blog.csdn.net/u011886447/article/details/79796802) (5.5+) :  必装
  * [JDK](https://www.oracle.com/technetwork/java/javase/downloads/index.html) (1.8+) :  必装
  * [ZooKeeper](https://www.jianshu.com/p/de90172ea680)(3.4.6) :必装 
- * [Hadoop](https://blog.csdn.net/Evankaka/article/details/51612437)(2.7.3) :选装, 如果需要使用到资源上传功能,MapReduce任务提交则需要配置Hadoop(上传的资源文件目前保存在Hdfs上)
+ * [Hadoop](https://blog.csdn.net/Evankaka/article/details/51612437)(2.6+) :选装, 如果需要使用到资源上传功能,MapReduce任务提交则需要配置Hadoop(上传的资源文件目前保存在Hdfs上)
  * [Hive](https://staroon.pro/2017/12/09/HiveInstall/)(1.2.1) :  选装,hive任务提交需要安装
  * Spark(1.x,2.x) : 选装,Spark任务提交需要安装
  * PostgreSQL(8.2.15+) : 选装,PostgreSQL PostgreSQL存储过程需要安装
@@ -27,15 +27,6 @@
 
 正常编译完后,会在当前目录生成 target/escheduler-{version}/
 
-```
-    bin
-    conf
-    lib
-    script
-    sql
-    install.sh
-```
-
 - 说明
 
 ```
@@ -74,7 +65,7 @@ mysql -h {host} -u {user} -p{password} -D {db} < quartz.sql
 
 ## 创建部署用户
 
-因为escheduler worker都是以 sudo -u {linux-user} 方式来执行作业,所以部署用户需要有 sudo 权限,而且是免密的。
+- 在所有需要部署调度的机器上创建部署用户,因为worker服务是以 sudo -u {linux-user} 方式来执行作业,所以部署用户需要有 sudo 权限,而且是免密的。
 
 ```部署账号
 vi /etc/sudoers
@@ -86,386 +77,73 @@ escheduler  ALL=(ALL)       NOPASSWD: NOPASSWD: ALL
 #Default requiretty
 ```
 
-## 配置文件说明
-
-```
-说明:配置文件位于 target/escheduler-{version}/conf 下面 
-```
-
-### escheduler-alert
-
-配置邮件告警信息
-
-
-* alert.properties 
-
-```
-#以qq邮箱为例,如果是别的邮箱,请更改对应配置
-#alert type is EMAIL/SMS
-alert.type=EMAIL
-
-# mail server configuration
-mail.protocol=SMTP
-mail.server.host=smtp.exmail.qq.com
-mail.server.port=25
-mail.sender=xxxxxxx@qq.com
-mail.passwd=xxxxxxx
-
-# xls file path, need manually create it before use if not exist
-xls.file.path=/opt/xls
-```
-
-
-
-
-### escheduler-common
-
-通用配置文件配置,队列选择及地址配置,通用文件目录配置
-
-- common/common.properties
-
-```
-#task queue implementation, default "zookeeper"
-escheduler.queue.impl=zookeeper
-
-# user data directory path, self configuration, please make sure the directory exists and have read write permissions
-data.basedir.path=/tmp/escheduler
-
-# directory path for user data download. self configuration, please make sure the directory exists and have read write permissions
-data.download.basedir.path=/tmp/escheduler/download
-
-# process execute directory. self configuration, please make sure the directory exists and have read write permissions
-process.exec.basepath=/tmp/escheduler/exec
-
-# data base dir, resource file will store to this hadoop hdfs path, self configuration, please make sure the directory exists on hdfs and have read write permissions。"/escheduler" is recommended
-data.store2hdfs.basepath=/escheduler
-
-# whether hdfs starts
-hdfs.startup.state=true
-
-# system env path. self configuration, please make sure the directory and file exists and have read write execute permissions
-escheduler.env.path=/opt/.escheduler_env.sh
-escheduler.env.py=/opt/escheduler_env.py
-
-#resource.view.suffixs
-resource.view.suffixs=txt,log,sh,conf,cfg,py,java,sql,hql,xml
-
-# is development state? default "false"
-development.state=false
-```
-
-
-
-SHELL任务 环境变量配置
-
-```
-说明:配置文件位于 target/escheduler-{version}/conf/env 下面,这个会是Worker执行任务时加载的环境
-```
-
-.escheduler_env.sh 
-```
-export HADOOP_HOME=/opt/soft/hadoop
-export HADOOP_CONF_DIR=/opt/soft/hadoop/etc/hadoop
-export SPARK_HOME1=/opt/soft/spark1
-export SPARK_HOME2=/opt/soft/spark2
-export PYTHON_HOME=/opt/soft/python
-export JAVA_HOME=/opt/soft/java
-export HIVE_HOME=/opt/soft/hive
-	
-export PATH=$HADOOP_HOME/bin:$SPARK_HOME1/bin:$SPARK_HOME2/bin:$PYTHON_HOME/bin:$JAVA_HOME/bin:$HIVE_HOME/bin:$PATH
-```
-
-
-​	
-
-Python任务 环境变量配置
-
-```
-说明:配置文件位于 target/escheduler-{version}/conf/env 下面
-```
-
-escheduler_env.py
-```
-import os
-
-HADOOP_HOME="/opt/soft/hadoop"
-SPARK_HOME1="/opt/soft/spark1"
-SPARK_HOME2="/opt/soft/spark2"
-PYTHON_HOME="/opt/soft/python"
-JAVA_HOME="/opt/soft/java"
-HIVE_HOME="/opt/soft/hive"
-PATH=os.environ['PATH']
-PATH="%s/bin:%s/bin:%s/bin:%s/bin:%s/bin:%s/bin:%s"%(HIVE_HOME,HADOOP_HOME,SPARK_HOME1,SPARK_HOME2,JAVA_HOME,PYTHON_HOME,PATH)
-
-os.putenv('PATH','%s'%PATH)	
-```
-
-
-
-hadoop 配置文件
-
-- common/hadoop/hadoop.properties
-
-```
-# ha or single namenode,If namenode ha needs to copy core-site.xml and hdfs-site.xml to the conf directory
-fs.defaultFS=hdfs://mycluster:8020
-
-#resourcemanager ha note this need ips , this empty if single
-yarn.resourcemanager.ha.rm.ids=192.168.xx.xx,192.168.xx.xx
-
-# If it is a single resourcemanager, you only need to configure one host name. If it is resourcemanager HA, the default configuration is fine
-yarn.application.status.address=http://ark1:8088/ws/v1/cluster/apps/%s
-
-```
-
-
-
-定时器配置文件
-
-- quartz.properties
-
-```
-#============================================================================
-# Configure Main Scheduler Properties
-#============================================================================
-org.quartz.scheduler.instanceName = EasyScheduler
-org.quartz.scheduler.instanceId = AUTO
-org.quartz.scheduler.makeSchedulerThreadDaemon = true
-org.quartz.jobStore.useProperties = false
-
-#============================================================================
-# Configure ThreadPool
-#============================================================================
-
-org.quartz.threadPool.class = org.quartz.simpl.SimpleThreadPool
-org.quartz.threadPool.makeThreadsDaemons = true
-org.quartz.threadPool.threadCount = 25
-org.quartz.threadPool.threadPriority = 5
-
-#============================================================================
-# Configure JobStore
-#============================================================================
+## ssh免密配置
+ 在部署机器和其他安装机器上配置ssh免密登录,如果要在部署机上安装调度,需要配置本机免密登录自己
  
-org.quartz.jobStore.class = org.quartz.impl.jdbcjobstore.JobStoreTX
-org.quartz.jobStore.driverDelegateClass = org.quartz.impl.jdbcjobstore.StdJDBCDelegate
-org.quartz.jobStore.tablePrefix = QRTZ_
-org.quartz.jobStore.isClustered = true
-org.quartz.jobStore.misfireThreshold = 60000
-org.quartz.jobStore.clusterCheckinInterval = 5000
-org.quartz.jobStore.dataSource = myDs
-
-#============================================================================
-# Configure Datasources  
-#============================================================================
- 
-org.quartz.dataSource.myDs.driver = com.mysql.jdbc.Driver
-org.quartz.dataSource.myDs.URL = jdbc:mysql://192.168.xx.xx:3306/escheduler?characterEncoding=utf8&useSSL=false
-org.quartz.dataSource.myDs.user = xx
-org.quartz.dataSource.myDs.password = xx
-org.quartz.dataSource.myDs.maxConnections = 10
-org.quartz.dataSource.myDs.validationQuery = select 1
-```
-
-
-
-zookeeper 配置文件
-
-
-- zookeeper.properties
-
-```
-#zookeeper cluster
-zookeeper.quorum=192.168.xx.xx:2181,192.168.xx.xx:2181,192.168.xx.xx:2181
-
-#escheduler root directory
-zookeeper.escheduler.root=/escheduler
-
-#zookeeper server dirctory
-zookeeper.escheduler.dead.servers=/escheduler/dead-servers
-zookeeper.escheduler.masters=/escheduler/masters
-zookeeper.escheduler.workers=/escheduler/workers
-
-#zookeeper lock dirctory
-zookeeper.escheduler.lock.masters=/escheduler/lock/masters
-zookeeper.escheduler.lock.workers=/escheduler/lock/workers
+- [将 **主机器** 和各个其它机器SSH打通](http://geek.analysys.cn/topic/113)
 
-#escheduler failover directory
-zookeeper.escheduler.lock.masters.failover=/escheduler/lock/failover/masters
-zookeeper.escheduler.lock.workers.failover=/escheduler/lock/failover/workers
-
-#escheduler failover directory
-zookeeper.session.timeout=300
-zookeeper.connection.timeout=300
-zookeeper.retry.sleep=1000
-zookeeper.retry.maxtime=5
-
-```
-
-
-
-### escheduler-dao
-
-dao数据源配置
-
-- dao/data_source.properties
-
-```
-# base spring data source configuration
-spring.datasource.type=com.alibaba.druid.pool.DruidDataSource
-spring.datasource.driver-class-name=com.mysql.jdbc.Driver
-spring.datasource.url=jdbc:mysql://192.168.xx.xx:3306/escheduler?characterEncoding=UTF-8
-spring.datasource.username=xx
-spring.datasource.password=xx
-
-# connection configuration
-spring.datasource.initialSize=5
-# min connection number
-spring.datasource.minIdle=5
-# max connection number
-spring.datasource.maxActive=50
-
-# max wait time for get a connection in milliseconds. if configuring maxWait, fair locks are enabled by default and concurrency efficiency decreases.
-# If necessary, unfair locks can be used by configuring the useUnfairLock attribute to true.
-spring.datasource.maxWait=60000
-
-# milliseconds for check to close free connections
-spring.datasource.timeBetweenEvictionRunsMillis=60000
-
-# the Destroy thread detects the connection interval and closes the physical connection in milliseconds if the connection idle time is greater than or equal to minEvictableIdleTimeMillis.
-spring.datasource.timeBetweenConnectErrorMillis=60000
-
-# the longest time a connection remains idle without being evicted, in milliseconds
-spring.datasource.minEvictableIdleTimeMillis=300000
-
-#the SQL used to check whether the connection is valid requires a query statement. If validation Query is null, testOnBorrow, testOnReturn, and testWhileIdle will not work.
-spring.datasource.validationQuery=SELECT 1
-#check whether the connection is valid for timeout, in seconds
-spring.datasource.validationQueryTimeout=3
-
-# when applying for a connection, if it is detected that the connection is idle longer than time Between Eviction Runs Millis,
-# validation Query is performed to check whether the connection is valid
-spring.datasource.testWhileIdle=true
-
-#execute validation to check if the connection is valid when applying for a connection
-spring.datasource.testOnBorrow=true
-#execute validation to check if the connection is valid when the connection is returned
-spring.datasource.testOnReturn=false
-spring.datasource.defaultAutoCommit=true
-spring.datasource.keepAlive=true
-
-# open PSCache, specify count PSCache for every connection
-spring.datasource.poolPreparedStatements=true
-spring.datasource.maxPoolPreparedStatementPerConnectionSize=20
-```
+## 部署
 
+### 1. 修改安装目录权限
 
-
-### escheduler-server
-
-master配置文件
-
-- master.properties
+- 安装目录如下:
 
 ```
-# master execute thread num
-master.exec.threads=100
-
-# master execute task number in parallel
-master.exec.task.number=20
-
-# master heartbeat interval
-master.heartbeat.interval=10
-
-# master commit task retry times
-master.task.commit.retryTimes=5
-
-# master commit task interval
-master.task.commit.interval=100
-
-
-# only less than cpu avg load, master server can work. default value : the number of cpu cores * 2
-master.max.cpuload.avg=10
-
-# only larger than reserved memory, master server can work. default value : physical memory * 1/10, unit is G.
-master.reserved.memory=1
+    bin
+    conf
+    install.sh
+    lib
+    script
+    sql
+    
 ```
+- 修改权限(deployUser修改为对应部署用户)
 
+    `sudo chown -R deployUser:deployUser *`
 
+### 2. 修改环境变量文件
 
-worker配置文件
+- 根据业务需求,修改conf/env/目录下的**escheduler_env.py**,**.escheduler_env.sh**两个文件中的环境变量
 
-- worker.properties
+### 3. 修改部署参数
 
-```
-# worker execute thread num
-worker.exec.threads=100
-
-# worker heartbeat interval
-worker.heartbeat.interval=10
-
-# submit the number of tasks at a time
-worker.fetch.task.num = 10
+ - 修改 **install.sh**中的参数,替换成自身业务所需的值
 
+ -  如果使用hdfs相关功能,需要拷贝**hdfs-site.xml**和**core-site.xml**到conf目录下
 
-# only less than cpu avg load, worker server can work. default value : the number of cpu cores * 2
-worker.max.cpuload.avg=10
-
-# only larger than reserved memory, worker server can work. default value : physical memory * 1/6, unit is G.
-worker.reserved.memory=1
-```
+### 4. 一键部署
 
+- 安装zookeeper工具 
 
+   `pip install kazoo`
 
-### escheduler-api
+- 切换到部署用户,一键部署
 
-web配置文件
+    `sh install.sh` 
 
-- application.properties
+- jps查看服务是否启动
 
+```aidl
+    MasterServer         ----- master服务
+    WorkerServer         ----- worker服务
+    LoggerServer         ----- logger服务
+    ApiApplicationServer ----- api服务
+    AlertServer          ----- alert服务
 ```
-# server port
-server.port=12345
 
-# session config
-server.session.timeout=7200
-
-server.context-path=/escheduler/
-
-# file size limit for upload
-spring.http.multipart.max-file-size=1024MB
-spring.http.multipart.max-request-size=1024MB
+## 日志查看
+日志统一存放于指定文件夹内
 
-# post content
-server.max-http-post-size=5000000
+```日志路径
+ logs/
+    ├── escheduler-alert-server.log
+    ├── escheduler-master-server.log
+    |—— escheduler-worker-server.log
+    |—— escheduler-api-server.log
+    |—— escheduler-logger-server.log
 ```
-
-
-
-## 伪分布式部署
-
-### 1,创建部署用户
-
-​	如上 **创建部署用户**
-
-### 2,根据实际需求来创建HDFS根路径
-
-​	根据 **common/common.properties** 中 **hdfs.startup.state** 的配置来判断是否启动HDFS,如果启动,则需要创建HDFS根路径,并将 **owner** 修改为**部署用户**,否则忽略此步骤
-
-### 3,项目编译
-
-​	如上进行 **项目编译**
-
-###  4,修改配置文件
-
-​	根据 **配置文件说明** 修改配置文件和 **环境变量** 文件
-
-### 5,创建目录并将环境变量文件复制到指定目录
-
-- 创建 **common/common.properties** 下的data.basedir.path、data.download.basedir.path和process.exec.basepath路径
-
-- 将**.escheduler_env.sh** 和 **escheduler_env.py** 两个环境变量文件复制到 **common/common.properties**配置的**escheduler.env.path** 和 **escheduler.env.py** 的目录下,并将 **owner** 修改为**部署用户**
-
-### 6,启停服务
+    
+## 启停服务
 
 * 启停Master
 
@@ -500,68 +178,3 @@ sh ./bin/escheduler-daemon.sh start alert-server
 sh ./bin/escheduler-daemon.sh stop alert-server
 ```
 
-
-
-## 分布式部署
-
-### 1,创建部署用户
-
-- 在需要部署调度的机器上如上 **创建部署用户**
-- [将 **主机器** 和各个其它机器SSH打通](https://blog.csdn.net/thinkmore1314/article/details/22489203)
-
-### 2,根据实际需求来创建HDFS根路径
-
-​	根据 **common/common.properties** 中 **hdfs.startup.state** 的配置来判断是否启动HDFS,如果启动,则需要创建HDFS根路径,并将 **owner** 修改为**部署用户**,否则忽略此步骤
-
-### 3,项目编译
-
-​	如上进行 **项目编译**
-
-### 4,将环境变量文件复制到指定目录
-
-​	将**.escheduler_env.sh** 和 **escheduler_env.py** 两个环境变量文件复制到 **common/common.properties**配置的**escheduler.env.path** 和 **escheduler.env.py** 的目录下,并将 **owner** 修改为**部署用户**
-
-### 5,修改 install.sh
-
-​	修改 install.sh 中变量的值,替换成自身业务所需的值
-
-### 6,一键部署
-
-- 安装 pip install kazoo
-- 安装目录如下:
-
-```
-    bin
-    conf
-    escheduler-1.0.0-SNAPSHOT.tar.gz
-    install.sh
-    lib
-    monitor_server.py
-    script
-    sql
-    
-```
-
-- 使用部署用户 sh install.sh 一键部署
-
-    - 注意:scp_hosts.sh 里     `tar -zxvf $workDir/../escheduler-1.0.0.tar.gz -C $installPath` 中的版本号(1.0.0)需要执行前手动替换成对应的版本号
-    
-## 服务监控
-
-monitor_server.py 脚本是监听,master和worker服务挂掉重启的脚本
-
-注意:在全部服务都启动之后启动
-
-nohup python -u monitor_server.py > nohup.out 2>&1 &
-
-## 日志查看
-日志统一存放于指定文件夹内
-
-```日志路径
- logs/
-    ├── escheduler-alert-server.log
-    ├── escheduler-master-server.log
-    |—— escheduler-worker-server.log
-    |—— escheduler-api-server.log
-    |—— escheduler-logger-server.log
-```

+ 53 - 62
install.sh

@@ -47,8 +47,57 @@ mysqlUserName="xx"
 # mysql 密码
 mysqlPassword="xx"
 
+# conf/config/install_config.conf配置
+# 安装路径,不要当前路径(pwd)一样
+installPath="/data1_1T/escheduler"
+
+# 部署用户
+deployUser="escheduler"
+
+# zk集群
+zkQuorum="192.168.xx.xx:2181,192.168.xx.xx:2181,192.168.xx.xx:2181"
+
+# 安装hosts
+ips="ark0,ark1,ark2,ark3,ark4"
+
+# conf/config/run_config.conf配置
+# 运行Master的机器
+masters="ark0,ark1"
+
+# 运行Worker的机器
+workers="ark2,ark3,ark4"
+
+# 运行Alert的机器
+alertServer="ark3"
+
+# 运行Api的机器
+apiServers="ark1"
+
+# alert配置
+# 邮件协议
+mailProtocol="SMTP"
+
+# 邮件服务host
+mailServerHost="smtp.exmail.qq.com"
+
+# 邮件服务端口
+mailServerPort="25"
+
+# 发送人
+mailSender="xxxxxxxxxx"
+
+# 发送人密码
+mailPassword="xxxxxxxxxx"
+
+# 下载Excel路径
+xlsFilePath="/tmp/xls"
+
 
 # hadoop 配置
+# 是否启动hdfs,如果启动则为true,需要配置以下hadoop相关参数;
+# 不启动设置为false,如果为false,以下配置不需要修改
+hdfsStartupSate="false"
+
 # namenode地址,支持HA,需要将core-site.xml和hdfs-site.xml放到conf目录下
 namenodeFs="hdfs://mycluster:8020"
 
@@ -58,6 +107,8 @@ yarnHaIps="192.168.xx.xx,192.168.xx.xx"
 # 如果是单 resourcemanager,只需要配置一个主机名称,如果是resourcemanager HA,则默认配置就好
 singleYarnIp="ark1"
 
+# hdfs根路径,根路径的owner必须是部署用户
+hdfsPath="/escheduler"
 
 # common 配置
 # 程序路径
@@ -69,17 +120,11 @@ downloadPath="/tmp/escheduler/download"
 # 任务执行路径
 execPath="/tmp/escheduler/exec"
 
-# hdfs根路径
-hdfsPath="/escheduler"
-
-# 是否启动hdfs,如果启动则为true,不启动设置为false
-hdfsStartupSate="true"
-
 # SHELL环境变量路径
-shellEnvPath="/opt/.escheduler_env.sh"
+shellEnvPath="$installPath/conf/env/.escheduler_env.sh"
 
 # Python换将变量路径
-pythonEnvPath="/opt/escheduler_env.py"
+pythonEnvPath="$installPath/conf/env/escheduler_env.py"
 
 # 资源文件的后缀
 resSuffixs="txt,log,sh,conf,cfg,py,java,sql,hql,xml"
@@ -87,11 +132,7 @@ resSuffixs="txt,log,sh,conf,cfg,py,java,sql,hql,xml"
 # 开发状态,如果是true,对于SHELL脚本可以在execPath目录下查看封装后的SHELL脚本,如果是false则执行完成直接删除
 devState="true"
 
-
 # zk 配置
-# zk集群
-zkQuorum="192.168.xx.xx:2181,192.168.xx.xx:2181,192.168.xx.xx:2181"
-
 # zk根目录
 zkRoot="/escheduler"
 
@@ -168,7 +209,6 @@ workerMaxCupLoadAvg="10"
 # worker预留内存,用来判断master是否还有执行能力
 workerReservedMemory="1"
 
-
 # api 配置
 # api 服务端口
 apiServerPort="12345"
@@ -188,53 +228,6 @@ springMaxRequestSize="1024MB"
 # api 最大post请求大小
 apiMaxHttpPostSize="5000000"
 
-
-
-# alert配置
-
-# 邮件协议
-mailProtocol="SMTP"
-
-# 邮件服务host
-mailServerHost="smtp.exmail.qq.com"
-
-# 邮件服务端口
-mailServerPort="25"
-
-# 发送人
-mailSender="xxxxxxxxxx"
-
-# 发送人密码
-mailPassword="xxxxxxxxxx"
-
-# 下载Excel路径
-xlsFilePath="/opt/xls"
-
-# conf/config/install_config.conf配置
-# 安装路径
-installPath="/data1_1T/escheduler"
-
-# 部署用户
-deployUser="escheduler"
-
-# 安装hosts
-ips="ark0,ark1,ark2,ark3,ark4"
-
-
-# conf/config/run_config.conf配置
-# 运行Master的机器
-masters="ark0,ark1"
-
-# 运行Worker的机器
-workers="ark2,ark3,ark4"
-
-# 运行Alert的机器
-alertServer="ark3"
-
-# 运行Api的机器
-apiServers="ark1"
-
-
 # 1,替换文件
 echo "1,替换文件"
 sed -i ${txt} "s#spring.datasource.url.*#spring.datasource.url=jdbc:mysql://${mysqlHost}/${mysqlDb}?characterEncoding=UTF-8#g" conf/dao/data_source.properties
@@ -317,8 +310,6 @@ sed -i ${txt} "s#alertServer.*#alertServer=${alertServer}#g" conf/config/run_con
 sed -i ${txt} "s#apiServers.*#apiServers=${apiServers}#g" conf/config/run_config.conf
 
 
-
-
 # 2,创建目录
 echo "2,创建目录"
 

monitor_server.py → script/monitor_server.py


+ 0 - 2
script/scp_hosts.sh

@@ -5,8 +5,6 @@ workDir=`cd ${workDir};pwd`
 source $workDir/../conf/config/run_config.conf
 source $workDir/../conf/config/install_config.conf
 
-tar -zxvf $workDir/../EasyScheduler-1.0.0.tar.gz -C $installPath
-
 hostsArr=(${ips//,/ })
 for host in ${hostsArr[@]}
 do